
Unreal Engine Fighting Game
1

１．About project settings (Changes in Ver.3.0 are written in blue.)
Check the settings of the local multiplayer in the map & mode in the project settings by
looking at the image below.

Next, turn off the automatic exposure in Engine → Rendering.
Also turn off motion blur.

Use splitscreen:Pturn it off.
When turned on, the screen is
divided into upper and lower parts.

Skip Assign GamePad to Player1:
Turn off if you assign the keyboard and first controller
to Player1, turn it on if you assign the keyboard and
first controller to Player1 and Player2.

When this is on, the brightness is automatically adjusted
according to the distance between the camera and the
object.

If this is on, the animation will be blurred.



Unreal Engine Fighting Game
2

Next, set the input settings of the controller in Engine → Input as shown in the following screen.
Note that if the name of the mapping is wrong, it will not work correctly.

Finally, specify the window size at the time of execution by level editor → play.
Enter the size at which the aspect ratio is 16: 9.
(Example: 1280 * 720/1600 * 900/1920 * 1080)

GamePad Directional-key Up

GamePad Directional-key Down

GamePad X button

GamePad A button

GamePad Directional-key Right

GamePad Directional-key Left

GamePad Directional-key Left Shoulder

GamePad Left Trigger

GamePad Y button

GamePad A button

GamePad Directional-key Right Shoulder

GamePad Right Trigger

GamePad Directional-key Left

GamePad Directional-key Right



Unreal Engine Fighting Game
3

This completes the project settings.
After confirming that you have opened the Start_Here file in the Stage folder in the contents
of the project, try running it.
（Check if the size is reflected in the new editor window.）

２．How to operate during the game
The operation method is explained using the buttons on the PlayStation controller.
■ Title screen
Click the ○ button to proceed.

■ Fighting mode select
Select 1on1 or 3on3 with the arrow keys and confirm with the ○ button. Click the × button
to return to the title screen.

■ Mode select
Select VS CPU (1on1 only) or VS Player. Press the × button to return to fighting mode.

■ Stage select
Select with the direction keys and confirm with the ○ button. Press the X button to return
to mode select.

■ Character select
Select with the direction keys and confirm with the ○ button.
In the case of 3on3, you can select 3 people, but you cannot select the same character
multiple times.
You can cancel the selection with the × button.

■ Operation method during battle
Directional keys: Move left and right to move back and forth, jump up, crouch down
□ button: weak punch
△ button: Strong punch
X button: Weak kick
○ button: strong kick
L1 button: throw and throw
L2 button: Counterattack while guarding (1 SP bar or more required)
R1 button: Assist attack by the second sub-character (3on3 only)
R1 button + direction key in front: Change with the second character (3on3 only)
R2 button: Sweep (1on1 only), assist attack by the third sub character (3on3 only)
R2 button + arrow key in front: 3rd character and change (3on3 only)
□ Special move (when the character is facing right)
236 + punch button: Fireball
214 + Punch Button: Flash Straight (Available in air)
623 + punch button: Flash Straight (anti-air)
236236 + punch button: Iceball (when SP bar is full)



Unreal Engine Fighting Game
4

□ Chain combo (sample)
While standing, press the ×, □, and△ buttons in order at a fixed timing.

□ Aerial combo (sample)
When you hit the arrow key on the△ button of the chain combo and hit the directional key,
after launching the opponent up,
Since you will be tracking, press the ×, □, and△ buttons in order at a fixed timing.
When the attack of the△ button is hit, you can cancel and use the aerial version of
Flash Straight.

３．About folder structure and files
Below is an overview of folders and files.
■Blueprints folder

BP_CommonController:This is the main program file for this project.

Receives player input and controls characters and various gauges.
Player2 control generates a file in the form of CommonController-1,

and Player1 and 2 are identified by the value of the variable Controller_ID.

BP_FightingGameMode:This file is the initial setting for this project

Basically there is no need to change the settings.

BP_GlobalCamera :This is the program file that controls the camera.



Unreal Engine Fighting Game
5

■Character Folder

□Char01 folder

A dedicated file for each character is saved.
When adding a character, please increase Char02, Char03 and folders.

□Animations

Character animation is saved.
□Blueprints

・ BP_Char01

Describes the processing when the character's attack / damage judgment box is set and
the opponent's Capsule component overlaps.

・ Char01_AnimBP

Controls animation play.

・ BP_Char01_Bullet

Controls the actor (FireBall) that occurs when using special moves.

・ BP_Char01_SP

Controls the actor (IceBall) that occurs when using Special Moves that can be used when
the SP gauge is full.

・Other animation montages

An animation montage is set for each character state such as standing or crouching.
In this file, the timing of occurrence / disappearance of attack judgment is specified using
notification.

・ Char01_Walk_Blend（Blend space 1D）
Controls the animation of standby and forward / backward movement.



Unreal Engine Fighting Game
6

・ Effect/Sounds Folder

It saved particles and sounds for the special moves of characters.

・Materials/Mesh/Textures Folder

The material of Gray Man, a standard UE4 character, is saved.

■Effect Folder

Contains the particles and their materials when hit or guarded.



Unreal Engine Fighting Game
7

■Sounds Folder

Contains sounds used for hits and widgets.

■Stages Folder

Contains stage material and level files.

■Widget

The Blueprint that controls the texture and animation required for the menu screen is saved.

４．How to add a stage
Add a folder and level file to store the material in the Stages folder.
Add the file and folder names as Stage02, Stage03, Stage04, etc.

Open the stage02 level file and create a level.
Here, BP_Sky_Sphere and DirectionalLight are added as an example.
Next, add the plane that will be the ground, but if you want to make the wall a level,
it is recommended that the area of the plane be 20 m * 20 m, and if you want a level without
a wall, it is recommended that the area be 60 m * 60 m To do.
（Here we add a 60m * 60m Plane.）
Next, check the coordinate axes.
In this project, the coordinate axes with the following orientations face the camera.

Once you have confirmed so far, create your favorite level.

The left side is the +
direction of the Y axis

The front is the + direction
of the X axis



Unreal Engine Fighting Game
8

Here, we will create Paragon free assets as an example.
After writing and saving Stage02, open the StartHere level and add Stage02 as a sublevel.
Set the ground coordinates of Stage02 to X: 0 Y: 2000 Z: -70.

In the above state, turn on the lighting scenario of Stage02 and perform the lighting build.

From now on, when editing sub-levels at the StartHere level, only one should be visualized.
For example, if Stage01 and Stage02 are visualized at the same time, a warning is displayed.
Next, prepare an image for the stage to be displayed on the stage select screen in the game
play screen.

Stage02_Small.png(250*250pixel）

Stage02_img.png（640*480Pixel）
Import the created image into the Widget → images folder.

Turn on the lighting
scenario.

Only the persistent level
and Stage02 are visible.

It can be added
by drag and drop.



Unreal Engine Fighting Game
9

Next, open the Widget Blueprint and specify Stage02_Small.png on the designer screen as
shown below.

Select Stage02 in [Grid_SelectStage] and select Stage02_Small.png for Uncheckedimage.
Next, open the function of Select Stage on the Widget Blueprint graph screen, specify
Stage02_img.png for Set Brush from Texture, and connect the node to continue processing
after selection.

It is OK if the build is done and it is reflected as follows on the select stage screen and the battle
screen.



Unreal Engine Fighting Game
10

５．How to add characters
To add a character, add the Char02 folder to the Characters folder.
Here, we will explain the phase of Paragon assets as an example.

Character BP file name is BP_Char02 and character animation BP is Char02_AnimBP.
First, open the BP_Char02 and set the mesh, capsule component, Box Collision to
judge attack and damage.

・ Capsule component

Set the value of Shape as follows.



Unreal Engine Fighting Game
11

Set Collision and Tag as follows:

・Mesh

Set the animation Anim Class to “None”.
Animation Blueprint is not required when selecting a character, so call it manually before the
battle.

Set the mesh position and rotation as follows.



Unreal Engine Fighting Game
12

・ Damge Box Collision （Add as a subcomponent of Mesh.）
Set the position, rotation, shape, and collision as follows.
The position and shape are set according to the character's physique,
so you can change them. However, if you make the height too low, you will not be able to
hit other characters' upper attacks.



Unreal Engine Fighting Game
13

・ About other Box Collision

For Arm_R / Arm_L / Foot_R / Foot_L / Damage_for_bullet / Cross_attack /
Damage_for_Throw / Throw / Damage_lower / Arm_R_Parry_AT/Arm_L_Parry_AT/
Foot_R_Parry_AT/Foot_L_Parry_AT/Arm_R_Parry_DM/Arm_L_Parry_DM/
Foot_R_Parry_DM/Foot_L_Parry_DM
set the position and rotation, Shape, parent socket and collision with reference to the setting
value of Char01.
Note the name of each Box Collision.
In addition, collision boxes with PRA and PRD names have new object types.
Let's set a new object channel on the project setting screen (engine-collision) as follows.

The settings of the collision box for Parry_AT and Parry_DM names are as follows.

I will copy the Blueprint of Char01 to the event graph from now on, so it will not work correctly
if I make a mistake.



Unreal Engine Fighting Game
14

・ About CharacterMovement

Set the values as follows:

・ About event graph

First, create a variable as follows:

Next, select and copy and paste the entire Blueprint of Char01's event graph.
However, since there is a macro inside the ➃red frame, the macro is not copied, so copy
and paste the node where the macro was expanded in the event graph of Char01,
and fold it or make it into a macro.



Unreal Engine Fighting Game
15

Next, the points that need to be set individually for each character are explained.
Red frame ➀ in the figure above: Select the animation sequence before character selection

on the character selection screen.
The top and bottom two are for Player 1 and 2.
Red frame ➁ in the above figure: Processing when the same character as Player1 is selected
when Player2 character is selected.
Change the color of the material in the character mesh or change the mesh itself.
Note that if you change the mesh itself, you will need to prepare the animation sequence and
animation montage separately for that mesh.
Red frame ➂ in the figure above: Set the animation sequence when selecting a character and

the animation blueprint to be used.
This completes the Char02 Blueprint settings.

➀

➁

➂

➃



Unreal Engine Fighting Game
16

Next, set up an animated blueprint for Char02_AnimBP.
An animation sequence and montage are required to set up , so the list is shown below.

List of animation sequences that need to be prepared.
Standing standby state Animation when nothing is input while standing. Applicable to Char01 Idle.
Walk forward Animation when moving forward. Applicable to Char01's Fwd_Walk.
Walking backwards Animation when retreating. Applies to Char01's Bwd_Walk.
Crouch standby Animation of crouching. Applicable to Char01's Crouch_Idle.
Crouching → standing Animation when standing up from crouching. Applies to Char01 End_Crouch.
Jump start Animation when jumping from standing. Applicable to Start_Jump of Char01.
Air standby state Animation when the jump is complete. Applicable to Char01 Loop_Jump.
Landing Animation when landing from a jump. Applicable to Char_End_Jump.
Step forward Animation when pre-stepping. Applicable to Char01's Fwd_Dash.
Backstep Animation when backstepping. Applies to Bwd_Step of Char01.
Standing punch L Animation when standing punch. This applies to ST_Punch of Char01.
Standing punch H Animation when standing punch. This applies to ST_L_Punch of Char01.
Standing kick L Animation when standing and kicking. Applicable to Char01's ST_Kick.
Standing kick H Animation when standing and kicking. Applicable to Char01's ST_L_Kick.

Standing Upper
Animation that launches the opponent up with a chain combo.
ST_Upper of Char01 is applicable.

Jumping punch L Animation when jump punching. Applicable to Air_Punch of Char01.
Jumping punch H Animation when jump punching. Applicable to Air_L_Punch of Char01.
Jumping kick L Animation when jump kicking. Applicable to Air_Kick of Char01.
Jumping kick H Animation when jump kicking. Applicable to Air_L_Kick of Char01.
Crouching punch L Animation when crouching punch. Applies to CR_Punch of Char01.
Crouching punch H Animation when crouching punch. Applies to CR_L_Punch of Char01.
Crouching kick L Animation when crouching and kicking. Applicable to CR_Kick of Char01.
Crouching kick H Animation when crouching and kicking. Applicable to CR_L_Kick of Char01.
Standing guard Animation when standing guard. Applies to the Guard of Char01.
Crouching guard Animation when crouching guard. Applicable to Char01's C_Guard.
Small damage at the top Animation of small damage on the upper row. Applies to Damaged_Top of Char01.
Large damage at the top Animation of heavy damage in the upper row. Applies to Damaged_Top_L of Char01.
Upper middle damage Animation of middle damage in the upper row. Applies to Damaged_Mid of Char01.
Crouching damage Animation of crouching damage. Applicable to C_Damaged of Char01.
Small damage in the air Animation of small damage in the air. Applies to Damaged_inAir of Char01.
Heavy damage in the air Animation of heavy damage in the air. Applies to Damaged_inAir_L of Char01.
Falling in the air Animation of damage in the air and falling. Falling of Char01 is applicable
Counter damage Counter damage animation. Applicable to Counter of Char01.
KO motion Animation when KO on the ground. Applicable to KO of Char01.
down Animation when under attack of down attribute. Applies to Char01 Down.
Usually get up Animation when getting up. Applies to Get_up01 of Char01.
Get up stun Animation when getting up from stun. Applicable to Get_up02 of Char01.
Stun Stunned animation. Applies to Char01's Stun.
Throw Animation that grabs the opponent. Applies to Throw001 of Char01.
Throwing success Animation to grab and throw an opponent. Applies to Throw002 of Char01.
Thrown A thrown animation. Applies to Damaged_Throw of Char01.
Throw-tech attack side Attacker animation when thrown away. Applies to Throw_tech_A of Char01.
Throw-tech defense side Animation when thrown through. Applies to Char01's Throw_tech_D.
Special Move (FireBall) FireBal animation. Applies to Char01's FireBall.
SM(FlashStraight) L FlashStraight animation. Applies to Char01's FS_S.
SM(FlashStraight) H FlashStraight animation. Applies to Char01's FS_L.

SM(FlashStraight) in air
Flash_Straight animation that can be used in the air.
FS_inAir of Char01 is applicable.

SM(FStraight upward) L FlashStraight-upward animation. Applies to Char01's FLtoA_S.
SM(FStraight upward) H FlashStraight-upward animation. Applies to Char01's FLtoA_L.
SM (IceBall) IceBall animation. Applicable to SP of Char01.
G-Reversal Counterattack animation during guard. Applies to Char01's G-Reversal.
Standing Sway Standing sway animation. Applies to Char01's ST_SW.
Crouching Sway Crouching sway animation. Applies to Char01's CR_SW.
Standing Parring Standing parring animation. Applies to Char01's ST_PR.
Crouching Parring Crouching parring animation. Applies to Char01's CR_PR.



Unreal Engine Fighting Game
17

Round win pose Animation of round victory. Applicable to Char01 Win.
Round loser pose Animation of a round loser on timeout. Applies to Draw for Char01.
Game victory pose Animation of the game victory. Applicable to Char01 GameSet.
Change side Animation when the character changes direction. Applies to Side_Change of Char01.

Attack during changing
Animation when characters change in 3on3.
Change and Change_end of Char01 are applicable.

List of animation montages that need to be prepared

ST_Attack Register a standing attack animation. In AnimNotify, set the time zone to receive
counter-attack, the time zone when the attack judgment occurs, the time zone to
accept the cancellation to the Special Move, the disappearance of the attack
judgment, and the off attack flag.※

CR_Attack Register a crouching attack animation. AnimNotify is the same as ST_Attack.
Attack_in_Air Register an attack animation in the jump state. AnimNotify sets the time period

when the attack judgment occurs, the attack judgment disappearance, and the
off-attack flag is off.

Change Animation when changing.
AnimNotify sets attack judgment disappearance and off-attack flag OFF.

SM Register the animation of the special move. AnimNotify is the same as ST_Attack.
Dash Register animation of previous step and back step. AnimNotify sets the timing to

cancel the invincible time of step off and back step.
Guard Register the standing guard and crouching guard animations. There is no setting

for AnimNotify.
Damage Register various animations when receiving damage. AnimNotify sets the timing

for turning off the damage flag and turning off the counter flag.
Throw Register throw and throw-tech animations. In AnimNotify, set the time zone to

receive a counter attack, the time zone in which an attack judgment occurs, the
time zone to allow a throw-tech, the loss of attack judgment, and the off-attack flag
off.

Other Register animations of down, getting up, stun, KO, and direction change.
In AnimNotify, set the down or getting up flag off.

Result Register victory and defeat animations. There is no setting for AnimNotify.

※By retargeting the Char01 animation montage with the Char02 mesh and swapping the animation

sequences in the animation montage, you can reuse AnimNotify and just adjust the notification timing.

Next, open Walk_Blend (blend space 1D) and set forward, backward and standby states.

From the animation sequence list on the right, drag
and drop Bwd_walk on the left, Idle on the center,
and Fwd_walk on the right.



Unreal Engine Fighting Game
18

Then set the values as follows:
It is important to set the horizontal Name to Speed, and other values are reference values.

Now that the animation sequence and montage are ready, open Char02_AnimBP and edit the
state machine.
First, set the variables as follows.

Next, set the anim graph as follows.



Unreal Engine Fighting Game
19

Next, set the state machine as follows.

For details on each item, refer to the Char01 state machine.

Next, for event graph settings, copy and paste from Char01_AnimBP.

Build after copying and pasting everything.
Probably you will get errors in some custom events.
If you just copy and paste, it may not be valid. In that case, recreate the same node and build it.
Once the build is complete, set the animation montage referenced by Play Montage and
Montage Stop to the Char02 montage.
Just copying it refers to the montage of Char01 and does not work even if the build passes.
Also, in the node that is processing the animation when taking damage, the animation when
thrown may be unique to each character, so make individual settings in the red frame part of
the image below.



Unreal Engine Fighting Game
20

When all references to Play Montage and Montage Stop are changed to Char02, Char02_Anim
settings are complete.

Next, set BP_Common_Controller.
Perform a reference search by right-clicking each of the variables P01_Char_Num and
P02_Char_Num, and set Char02 while referring to the Char01 settings at each search
destination.



Unreal Engine Fighting Game
21

For example, the following image will be the processing node for character selection in
Player01, but processing for Char02 in the red frame is added.

■Setting of BP_Common_Controller
Set Char02 as follows with reference to Char01 setting.
・ Custom event Select Character

Char02 processing is added within the red frame.
To support 3on3, it is necessary to support 6 locations including Player02.

・ Custom event Destroy Bullet
It is a process to initialize the special move's a projectile.
When setting a projectile as a special move for a newly set character, refer to Char01 settings
Add processing.



Unreal Engine Fighting Game
22

・ Function Spawn Character
It is the process of setting the spawn and initial value of the character.
To support 3on3, it is necessary to support 6 locations including Player02.

・ Event graph Command
For the 236, 214, and 623 commands, you need to decide which one to enable and
connect the nodes.

・ Custom event Setting Attack-box
It is necessary to set which of your hands and feet is valid for the Kind of attacking value.



Unreal Engine Fighting Game
23

■Setting of BP_GlobalCamera
It is necessary to set the position of the camera when using SP Special Moves.

■Widget_Fighting settings
It is necessary to add images to be used in character selection and battle,
and to make settings when selected.
First, add an image to the character select grid background on the designer screen as shown
below.(125 * 300pixel)

Next, set the Reference Texture as shown in the image below in the Select Character function
in the event graph.
Char_name02 (300 * 50pixel): Name displayed below the character when the character is

selected.
Char_hp_name02 (250 * 30pixel): Name displayed below the HP bar during battle.
Char02_P01 / Char02_P02 (304 * 335pixel) : Character image displayed next to HP bar

during battle.



Unreal Engine Fighting Game
24

■ Operation check

After building and running, it is OK if it is reflected as shown below.

６．Notes on debugging
When checking the operation, be sure to check the frame rate.
（Enter the Stat fps command in the output log or set the value obtained by dividing 1 by

WorldDeltaSeconds to PrintString connected to Tick.）
If you operate with a reduced frame rate, you may experience a bug that occurs only when the
frame rate is reduced.
As shown in the image below, it is confirmed that the frame rate decreases when playing while
checking the execution of Blueprint.
In order to solve this problem, you can check the execution of Blueprint while keeping 60fps by
using the multiple display and running Blueprint execution window and play window on different
monitors.
However, if you zoom out the blueprint execution confirmation range to a wide range, the frame
rate may decrease even if you use multiple displays.

End.

RareEncounter Ver.3.0


